
🗲 國立臺灣海洋大學 海洋科學與資源學院 海洋環境與生態研究所 Institute of Marine Environment and Ecology

Differences Nitrogen Source Effect on Particulate and Dissolved Primary Production : An Experimental Design

Presenter: Thai Nien En (蔡念恩)

Introduction:

Location:

This study site was located in the coast next to the College of Engineering, National Taiwan Ocean University, Keelung, Taiwan.

Background:

X Varela et al. (2005) found that different nitrogen sources (ammonium and nitrate) will affect PER

Supervisor: Chen Tzong-Yueh

%The percentage of extracellular dissolved organic nitrogen (DON) release (PER_N) was related to nitrogen uptake from different nitrogen source

With the second seco Using ammonium as the nitrogen source : $PER_N 22\pm 2.1 \%$

Goal:

To test if the percentage of extracellular dissolved organic carbon (DOC) release (PER_c) is controlled by difference nitrogen sources.

Photosynthesis-Irradiance Experiments

SPrimary production was determined by the ¹⁴C assimilation method (Parsons et al., 1984) Samples incubated at different photosynthetically active radiation(PAR) levels SAfter incubation PPP subsamples were collected on GF/F filters , while DPP subsamples of 5 mL were collected as the filtrate passing through a 0.22-µm membrane SAfter HCl acidification on GF/F filters and into

0.22- μm filtrate, scintillation cocktail were added to subsamples counted on liquid scintillation counter.

Expected result:

X DPP : Treatments > Control

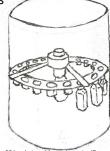
¤ PPP : Treatments > Control

¤ PER_c : Treatment 3 > Treatment 2> Treatment 1

Preliminary Results : Environmental variables

		Exp I	Exp II			
Date		Jun 8, 2020	Jul 9, 2020			
Temperature	° C	26.5	28			
Salinity	(psu)	35.993±0.003	36.181±0.052			
Chl-a	(mg m ⁻³)	0.128±0.033	0.130±0.015			
Nitrate	(μM)	1.97±0.06	1.40±0.00			
Nitrite	(μM)	0.21±0.01	0.12±0.02			
Phosphate	(μM)	0.20±0.01	0.18±0.05			
Silicate	(μM)	3.13±0.06	2.13±0.22			

Validation for nitrate concentrations (µM)


	Exp I		Exp II	
	Expected	Real	Expected	Real
T1	1.97	2.17±0.06	1.40	1.47±0.15
T2	2.97	2.90±0.00	2.40	2.17±0.23
Т3	3.97	3.97±0.15	3.40	3.07±0.40

Reference:

Varela, M., Bode, A., Fernandez, E., Gonzalez, N., Kitidis, V., Varela, M., and Woodward, E. (2005) Nitrogen uptake and dissolved organic nitrogen release in planktonic communities characterised by phytoplankton size-structure in the Central Atlantic Ocean, Deep-Sea Res. I, 52: 1637–1661

Acknowledgement :

I thank Mr. David Mo and Yu-Kai Yeh for water sampling and experimental helps. I also deeply thank Dr. Gwo-Ching Gong's lab for the help of hydrological analysis.

PP incubator with running water (figure drawn by Nagwa Lee)